www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0652 PHYSICAL SCIENCE

0652/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			2.
Page 2	Mark Scheme	Syllabus	.0
	IGCSE – October/November 2013	0652	123
			W 7/1

- 1 (a) (i) 87, 67, 39, 3 all correct ±1 cm; 12, 32, 60, 96 – all correct (ecf);
 - (ii) All points plotted correctly to within ½ square including (0,0), but allow if line goes thro (0,0); [1] clear smooth curve (accept best fit straight line if distances = 12, 20, 48 etc.); [1] [2]
 - Choice of any two correct points e.g. (10,0) and (175,0.80); [1] Use of gradient (176-10)/(0.80-0) or use of a=(v-u)/t; [1] $210 \, \text{cm/s}^2$ or $2.1 \, \text{m/s}^2$ (accept 206 and ignore sig. figs); [1] [3] (Answer mark can only be scored if answer lies between 200 and 210)
- 2 (a) F⁻, Na⁺, P [2] (3 correct symbols 1, 3 correct charges 1);
- **(b)** Fe_2O_3 ; (accept $Fe_2^{3+}O_2^{2+}$) [1]
- **3** (a) boiling point increases (down the group/with atomic number); [1]
 - **(b)** accept any number between –170 and –240 (actually –189) [1]
 - (c) helium or neon(no mark)
 recognition only helium and/or neon are less dense than air;
 comment that average density of He balloon less than density of air OR
 average density of Ne filled balloon is greater than air;

 [1]
 [2]
- 4 (a) Wire 1 named metal, (not Group 1 nor Hg); [1]
 Wire 2 and 3 different metal; [1]
 - (b) Needle moves across dial or clear the reading changes
 (not accept flicks up then down);

 e,m.f./voltage produced (accept current);
 due to junctions are at a different temperatures;

 [1]

 [3]
 - (c) follows rapidly changing temperature;
 measures high temperature (ignore ref to low temp or wide range);
 measures temperature at a point;
 operator remote from thermometer/can be linked to computer;
 clear link to specific task (e.g. temperature very high in engine);
 [+1] [3]

[Total 8]

[Total 3]

[Total 4]

				Mary.		
	Pa	ge 3	3	Mark Scheme Syllabus	V	
				IGCSE – October/November 2013 0652	00-	
5	(a)	(i)	diam grap	Can	bridge	
	(ii) diamond has no free electrons and/or graphite has free electrons;					ai
		in graphite elections are between layers and/or in diamond all elections			[1]	
		involved in (strong) bonding ;				[2]
	` ,			gnition of covalent/strong bonds (so similar mp); e amount of energy needed to separate atoms joined by covalent bonds;	[1] [+1]	[2]
			•	not allow either mark if the candidate states that graphite has a much er melting point/has much weaker bonds than diamond)		
	(b)			has weak forces <u>between molecules</u> ; rgy is needed to separate the molecules;	[1] [1]	[2]
	(c)	(i)		$O_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ mark for formulae; one mark for balance;	[2]	
		(ii)		gy carried by e.m. radiation ; orbed by the plant ;	[1] [1]	[2]
					[Tota	l 12]
6	(a)	(i)	Only	a fraction of incident wave is reflected/wave spreads out etc.;	[1]	
		(ii)	4 ½	squares $\times 0.05 \times 10^{-3} = 2.25 \times 10^{-4} \text{ s} (0.000225 \text{ s});$	[1]	

[1]

[1]

[1] [1]

[1]

[2]

[1]

[1]

[2]

[Total 7]

[2]

[2]

[1]

(iii) distance = $\frac{1}{2} \times 3 \times 10^8 \times 2.25 \times 10^{-4}$;

(b) (i) Use of $c = f\lambda$ ($\rightarrow f = 3 \times 10^8 / 7.5 \times 10^{-3}$); $f = 4.0 \times 10^{10} \,\text{Hz}$;

(b) (bubble through) lime water; turns cloudy/milky;

7

 $(1_c \text{ if } \frac{1}{2} \text{ missed leading to } 68000 \text{ m});$

(ii) Mobile phone communication/cooking/uhf radio communication etc.;

Note: Penalise power of ten error once only in the whole question.

(a) (i) All points, including (0,0) plotted to within one small square;

(one mark if one point only is missing.incorrect)

(ii) smooth curve within one small square of each point;

 $= 34000 \,\mathrm{m} \,(\mathrm{accept}\,33750 \,\mathrm{m});$

Pag		ne 1	Ma	Mark Scheme Syllabus			
Page		ige 4		tober/November 2013	0652	0	
	(c)	(i)	all of the hydrochloric aci		Syllabus 0652	Can	B.
		(ii)	RFM CaCO $_3$ = 100; number of moles = 40 / 2 (ignore power of ten for the second of t	4×10^3 ; his mark, but not carry forward)		[1] [1] [1]	[3]
	(d)		that is steeper than origin levels at 40 cm³ (same as	al and starts from (0,0) (to the soriginal line);	left of original line) ;	[1] [1] [Total	[2] 11]
8	(a)	(i)	Transformer 2 step down (accept in correct referen	creases the voltage (for transm /decreases the voltage (for ho ce to decrease/increase of cur o up transformer and 'step down	mes) ; rent)	[1] [1]	[2]
		(ii)	Less energy loss (in power reference to lower curren	, :		[1] [1]	[2]
	(b)	(i)	good conductor; lattice of positive ions (no in a sea of electrons; electrons free to move;	ot accept if +ve ions move) ;		[1] [1] [1]	[4]
		(ii)	Reference to malleability (Zero for reference to allo	of copper or increase strength bying);	of cable ;	[1]	[1]
						[Tota	al 9]
9	(a)	diagram showing four shared electrons between two carbon atoms and 8 electrons around the carbons; diagram showing two hydrogen atoms for each carbon atom, each sharing two electrons with the carbon atom;		[1] [1]	[2]		
	(b)	(i)	cracking (accept thermal	decomposition);		[1]	
		(ii)	high temperature (not acc catalyst ;	cept heat) ;		[1] [1]	[2]
	(c)	(i)	RFM $C_2H_4 = 28$ and RFM mass of ethanol = 46 / 28			[1] [1]	[2]
		(ii)		urce of sugar e.g. grapes); ks if the yeast is killed by high ce of oxygen)	temperature, lose	[1] [1] [1]	[3]

[Total 10]

Page 5	Page 5 Mark Scheme Syllabus			
	IGCSE – October/November 2013	0652	100	

- **10 (a) (i)** The joining together of two <u>nuclei</u>; extra detail (e.g. the release of energy, small (light) nuclei, high energy collision);
 - (ii) radio waves
 microwaves
 thermal (Heat), IR
 U.V.
 X-ray
 γ-rays
 visible radiation/light
 neutrinos/neutrons;
 - **(b) (i)** $((3.3434 \times 2) 6.6810) \times 10^{-27} = 0.0058 \times 10^{-27} \text{kg} = 5.8 \times 10^{-30} \text{kg}$; [1]
 - (ii) $E = mc^2 = (5.8 \times 10^{-30} \times (3 \times 10^8)^2)$ (Formula on its own gains the mark); [1] = 5.2×10^{-13} J;
 - (iii) number of reactions / s = power / energy of each reaction = $4 \times 10^{26} / 5.22 \times 10^{-13}$; [1] = 7.67 × 10³⁸ (s⁻¹); [1] [2]

Note: Penalise power of ten error once only in the whole question.

[Total 9]

ANY 2

[2]